»姓名:韩沛秀 | »系属:自动化系 | |
»学位:工学博士学位 | »职称:讲师 | |
»专业:交通运输工程 | »导师类别: | |
»电子邮箱:hanpeixiuer@upc.edu.cn | ||
»联系电话: | ||
»通讯地址:山东省青岛市黄岛区长江西路66号工科E | ||
»概况 | ||
◎研究方向 联邦学习、迁移学习、船舶能效预测及运筹优化、船舶航迹预测 ◎教育经历 2021年-2025年 大连海事大学交通运输工程专业 工学博士 2018年-2021年 大连海事大学交通运输工程专业 工学硕士 2014年-2018年 大连海事大学交通管理英语强化专业 学士 ◎工作经历 2025.09-至今 太阳集团tyc234cc太阳集团tyc234cc,讲师 ◎学术兼职 担任Frontiers in Marine Science Special Session Guest Editor 常年担任Ocean Engineering、Transportation Research Part C、Computers and Industrial Engineering及IEEE Transactions in Intelligent System等期刊审稿人 CCF会员,中国运筹学会会员,中国航海学会会员,中国公路学会会员,中国物流学会会员等 ◎主讲课程 ◎指导研究生及博士后 ◎承担项目 承担及参与项目情况 [1] 国家自然科学基金面上项目:适合复杂地形的强非线性Boussinesq水波理论(52171247),2022.01-2025.12,参与人。 [2] 国家自然科学基金面上项目:粗粒度海滩横向输沙动力机制及岸滩剖面演化研究(52071057),2021.01-2024.12,参与人。 ◎获奖情况 [1] 中国物流发展专项基金-宝供物流奖,中国光华科技基金会及国物流与采购联合会(连续三年) [2] 英特尔奖学金,Intel Semiconductor (Dalian) Co., Ltd. [3] WTC2022优秀论文奖,世界交通运输大会执委会 ◎荣誉称号 [1] 中远海运科技创新优秀个人 [2] 大连市优秀毕业生 [3] 优秀博士研究生干部及优秀研究生 ◎著作 ◎论文 期刊论文: [1] Han P, Liu Z*, Li C, et al. A novel federated learning-based two-stage approach for ship energy consumption optimization considering both shipping data security and statistical heterogeneity[J]. Energy, 2024: 133150.(中科院1区TOP, 检索号WOS: 001386172900001) [2] Han P, Liu Z*, Sun Z, et al. A novel prediction model for ship fuel consumption considering shipping data privacy: An XGBoost-IGWO-LSTM-based personalized federated learning approach[J]. Ocean Engineering, 2024, 302: 117668. (中科院2区TOP, 检索号WOS:001222175300001) [3] Li C, Han P*, Zhou M, et al. Design of multimodal hub-and-spoke transportation network for emergency relief under COVID-19 pandemic: A meta-heuristic approach[J]. Applied Soft Computing, 2023, 133: 109925.(中科院1区TOP,检索号WOS: 000993286600001) [4] Liu Z, Han P, Fang K, et al. A high-order nonlinear Boussinesq-type model for internal waves over a mildly-sloping topography in a two-fluid system[J]. Ocean Engineering, 2023, 285: 115283.(中科院2区TOP,检索号WOS: 001047931200001) [5] Han P, Sun Z, Liu Z. An inventory hub location model for multi-coal-fired coastal power plants: a case study in Guangdong district[J]. International Transactions in Operational Research, 2022, 29(5): 2899-2920.(SCI,中科院3区,检索号WOS: 000737278900001) [6] Han P, Li S, Liu Z* et al. Ship fuel oil consumption prediction at sea and in port considering sustainable maritime industry: A comparative study of machine learning and deep learning approaches [J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2025:1-16.(SCI) [7] 韩沛秀,孙卓,刘忠波*,等.基于个性化联邦学习的异构船舶航行油耗预测[J].计算机集成制造系统, 2025, 31(01):182-196.(EI) [8] 韩沛秀,刘忠波*,闫椿昕. 基于改进双向长短时记忆神经网络的船舶航行油耗预测与优化[J/OL].工业工程与管理, 2025: 1-24. (EI) [9] Sun Z*, Han P, Liu J, et al. A New Location and Routing Model for Cross-Docking of Fresh Produce[J]. Asia-Pacific Journal of Operational Research, 2021, 38(04): 2050055. (SCI,检索号WOS: 000686612300002) [10] 刘忠波,韩沛秀,房克照,等.适合渗透海床波浪运动的三维Boussinesq型方程[J]. 船舶力学, 2024, 28(05): 697-704.(EI) [11] Wang Y, Wang N, Han P. Maritime location inventory routing problem for island supply chain network under periodic freight demand[J]. Computers & Operations Research, 2023, 149: 106042.(SCI, 中科院2区,检索号WOS: 000874572800004) [12] Yang H, Sun Z, Han P, et al. Data-driven prediction of ship fuel oil consumption based on machine learning models considering meteorological factors[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2023: 14750902231210047. (SCI,检索号WOS: 001107703200001) [13] Ma M, Sun Z, Han P X, et al. A stacking ensemble learning for ship fuel consumption prediction under cross-training[J]. Journal of Mechanical Science and Technology, 2024: 1-10. (SCI,检索号WOS: 001138006900001) [14] Afum, E., Li, Y., Han, P., Sun, Z. Interplay between lean management and circular production system: implications for zero-waste performance, green value competitiveness, and social reputation. Journal of Manufacturing Technology Management, 2022, 33(7), 1213-1231. (SCI及SSCI, 检索号WOS: 000827538900001) 会议论文: [15]Han P, Sun Z, Jing X, et al. An improved artificial bee colony algorithm to port L-AGV scheduling problems[C]//2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE). IEEE, 2021: 294-299.(EI) [16]Han P, Sun Z, Liu K, et al. A New Model for Sea-Rail Intermodal Transportation Network System Planning Considering the Arctic Route[C]//2021 4th International Conference on Intelligent Autonomous Systems (ICoIAS). IEEE, 2021: 351-356.(EI) [17]Han P, Liu Z, Sun Z. Hierarchical Hub Location-allocation Optimization in Rail-sea Container Transportation Network: A Meta-heuristic Approach.(Excellent paper of WTC2022) ◎专利 |